

Axlou Toth pour l'Innovation

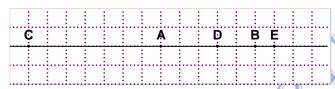
NIVEAU: SECONDE S

PRODUIT SCALAIRE

Exercice 1:

Calculer les produits scalaires \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{BA} . \overrightarrow{BC} sachant que $\overrightarrow{AB} = 5$, $\overrightarrow{AC} = 7$ et $\overrightarrow{DC} = 10$.

1) On a choisi les points A, B, C, D et E sur une droite munie d'une graduation régulière comme l'indique la figure (l'unité de longueur choisie est la longueur de [BE]).



Calculer les produits scalaires : \overrightarrow{AB} . \overrightarrow{AC} ; \overrightarrow{AB} . \overrightarrow{AD} ; \overrightarrow{AD} . \overrightarrow{AD} ; \overrightarrow{AC} . \overrightarrow{BE} ; \overrightarrow{CA} . \overrightarrow{DE} .

2) Déterminer la valeur exacte du produit scalaire \overrightarrow{AB} . \overrightarrow{AC} dans le cas où :

AB = 3, AC =
$$4\sqrt{3}$$
 et $\widehat{BAC} = \frac{5\pi}{6}$.

3) Soient trois points M, N, P tels que : MN = 3, MP = 7 et \overrightarrow{MN} . $\overrightarrow{MP} = -18$. Déterminer une valeur approchée de la mesure en degrés de \widehat{NMP} .

Exercice 2:

La figure ci-contre représente un rectangle ABCD tel que AB=5 et BC=3;

Un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C.

Le point H est le milieu du segment [AB].

Calculer les produits scalaires suivants :

- 1) \overrightarrow{AB} , \overrightarrow{AH} ; 2) \overrightarrow{BC} , \overrightarrow{BE} ;
- **3)** \overrightarrow{AB} . \overrightarrow{AF} ; **4)** \overrightarrow{BD} . \overrightarrow{CE} ;
- **5)** \overrightarrow{BE} . \overrightarrow{BA} ; **6)** \overrightarrow{AD} . \overrightarrow{CE} .

Exercice 3:

Soit ABC un triangle équilatéral de côté 4. On note A' le milieu du segment [BC].

1) Faire une figure et calculer la valeur exacte de la distance AA'.

Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

- 2) Calculer les produits scalaires : \overrightarrow{BA} . \overrightarrow{BC} et \overrightarrow{AB} . $\overrightarrow{AA'}$.
- 3) Calculer $(\overrightarrow{BA} + \overrightarrow{BC})^2$. En déduire $||\overrightarrow{BA} + \overrightarrow{BC}||$.

Exercice 4:

ABCD est un carré de côté $a.\ I,J$ et K sont les points du plan tels que : $\overrightarrow{DI} = \frac{1}{3}\overrightarrow{DC}$; $\overrightarrow{CJ} = \frac{1}{3}\overrightarrow{CB}$ et $\overrightarrow{AK} = \frac{1}{3}\overrightarrow{AD}$.

- 1) Calculer les produits scalaires : \overrightarrow{IJ} . \overrightarrow{AB} ; \overrightarrow{IK} . \overrightarrow{BD} ; \overrightarrow{KJ} . \overrightarrow{IJ} ; \overrightarrow{AJ} . \overrightarrow{AJ} ; \overrightarrow{KC} . \overrightarrow{AI} .
- 2) a) Calculer IJ et IK.
 - **b)** Calculer $\overrightarrow{IJ}.\overrightarrow{IK}$ de deux façons différentes. En déduire une valeur approchée par défaut de l'angle \widehat{KJI} .
- **3)** Soient M et N les milieux respectifs de [DC] et [BC]. Montrer que la droite (DN) est perpendiculaire à (AM).

Exercice 5:

- **1)** Démontrer, en utilisant des vecteurs normaux, que deux droites d'équations respectives : ax + by + c = 0 et a'x + b'y + c' = 0 sont orthogonales si et seulement si aa' + bb' = 0.
- 2) Démontrer que deux droites d'équations respectives : y = mx + p et y = m'x + p' sont orthogonales si et seulement si mm' = -1.

Exercice 6:

On considère, dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , le point A tel que : OA = 3 et $(\vec{i}, \overrightarrow{OA}) = \frac{\pi}{3}$.

- 1) Calculer les coordonnées de A.
- **2)** Calculer les coordonnées du point H, projeté orthogonal de A sur la première bissectrice (droite d'équation y = x).
- 3) En déduire la valeur exacte de $\cos \frac{\pi}{12}$.

Exercice 7:

Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$. Soient A(-2; 0), B(3; -1) et C(4; 2).

- 1) Déterminer un vecteur normal et un point de la médiatrice (Δ) du segment [AB]. En déduire une équation cartésienne de (Δ).
- 2) Déterminer une équation cartésienne de la médiatrice d'un autre côté du triangle ABC.
- 3) Calculer les coordonnées du centre I du cercle circonscrit au triangle ABC.

Exercice 9:

Soit (C) un cercle de diamètre [AB], H un point de [AB], (D) la perpendiculaire à (AB) en H. Soit M un point de (C). La droite (BM) coupe (D) en N.

Visiter notre site pour vous ressourcer en Maths-PC-SVT : <u>www.axloutoth.sn</u>

Siège: Point E (DAKAR)

Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

- 1) Démontrer que : \overrightarrow{BM} . $\overrightarrow{BN} = \overrightarrow{BN}$. \overrightarrow{BA} .
- **2)** En déduire que le produit scalaire \overrightarrow{BM} . \overrightarrow{BN} reste constant lorsque M décrit (C).

Exercice 10: Relation d'Euler

Soit un triangle ABC.

- 1) Démontrer que, pour tout point M du plan, on a : \overrightarrow{MA} . \overrightarrow{BC} + \overrightarrow{MB} . \overrightarrow{CA} + \overrightarrow{MC} . \overrightarrow{AB} = 0.
- 2) Utiliser cette égalité pour montrer que les trois hauteurs d'un triangle sont concourantes.

Exercice 11:

Dans le plan rapporté à un repère orthonormal, on considère les points A(1;2) et B(3;0).

- 1) Déterminer par une équation l'ensemble (E) des points M tels que \overrightarrow{MA} . $\overrightarrow{MB} = 3$.
- 2) Quelle est la nature de cet ensemble?
- 3) Peut-on trouver un point P sur (y'y) tel que \overrightarrow{PA} . $\overrightarrow{PB} = 3$?
- **4)** Déterminer par une équation l'ensemble (F) des points M tels que $\overrightarrow{MA}.\overrightarrow{AB} = 3$.
- **5)** Déterminer l'ensemble $(E) \cap (F)$ à l'aide des équations trouvées pour (E) et (F).
- **6)** Déterminer $(E) \cap (F)$ sans utiliser les équations de (E) et (F).

Exercice 12: Distance d'un point à une droite

Dans le plan muni d'un repère orthonormal $(0; \vec{i}, \vec{j})$, on considère la droite (D): 2x - 3y + 1 = 0.

- 1) Préciser les coordonnées d'un vecteur \vec{u} normal à la droite D.
- 2) Soit A un point du plan. Notons x_A et y_A ses coordonnées. Soit H le projeté orthogonal de A sur D.

Démontrer que : \vec{u} . $\overrightarrow{HA} = 2x_A - 3y_A + 1$. En déduire que $AH = \frac{|2x_A - 3y_A + 1|}{\|\vec{u}\|}$.

- 3) Applications numériques :
 - a) Calculer la distance du point A(7; 4) à la droite (D), puis la distance du point B(2; 6) à (D).
 - b) Déterminer une équation cartésienne du cercle (C) de centre $\Omega(-1; -3)$ et tangent à la droite d'équation x y + 4 = 0.

Exercice 13.:

Soit (C) le cercle de centre O et de rayon S et soit S le point de coordonnées S dans un repère orthonormé S du plan.

- **1)** Déterminer une équation du cercle (C).
- 2) Soit $m \in \mathbb{R}$ et (D_m) la droite passant par A de coefficient directeur m. Donner une équation de (D_m) .
- 3) Démontrer que les abscisses x des points communs à (C) et (D_m) sont les solutions de l'équation : $(1+m^2)x^2+12mx+27=0$ (E).
- **4) a)** Calculer le discriminant Δ_m de (E).
 - **b)** Pour quelles valeurs de m l'intersection de (C) et (D_m) ne contient-elle qu'un seul point ?

 $\label{thm:control} \textbf{Visiter notre site pour vous ressourcer en Maths-PC-SVT:} \underline{\textbf{www.axloutoth.sn}}$

Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

c) En déduire les équations des tangentes à (C) passant par A?

Exercice 14:

Dans un plan, muni d'un repère orthonormal (O, \vec{i}, \vec{j}) , on considère les points : A(2; 1); B(5; 7); C(3; -1) et D(5; 5). On note Δ l'ensemble des points M(x; y) du plan tels que \overrightarrow{AM} . $\overrightarrow{AB} = 27$ et Γ le cercle de diamètre [CD].

- 1) a) Déterminer une équation de Δ et Γ .
 - **b)** Vérifier que H(-1; 7) est un point de Δ et que E(1; 1) est un point de Γ .
 - **c)** Construire Δ et Γ .
- **2) a)** Résoudre le système (S) : $\begin{cases} x + 2y 13 = 0 \\ x^2 + y^2 8x 4y + 10 = 0 \end{cases}$
 - b) Que peut-on en déduire?
- 3) Déterminer l'équation réduite de la tangente (D) à Γ au point E puis la tracer
- **4)** Déterminer les coordonnées des points d'intersection de Γ avec les axes du repère.

Exercice 15:

On considère dans le plan rapporté à un repère orthonormé (0,t,j) les droites (D_1) , (D_2) et (D_3) définies par : (D_1) : $\begin{cases} x=-8+t \\ y=-3+t \end{cases}$; (D_3) : $\begin{cases} x=1-t \\ y=3+2t \end{cases}$.

- 1) Donner une équation cartésienne de chacune des droites (D_1) , (D_2) et (D_3) et les construire.
- **2**) Ces droites déterminent un triangle ABC avec $\{A\} = D_2 \cap D_3$, $\{B\} = D_1 \cap D_3$ et $\{C\} = D_1 \cap D_2$. Déterminer les coordonnées des points A, B et C.
- 3) Montrer que les vecteurs \overrightarrow{AC} et \overrightarrow{OB} sont orthogonaux. En déduire que O est l'orthocentre du triangle ABC.
- **4)** Déterminer une équation cartésienne du cercle (*C*) circonscrit au triangle *ABC*. (On précisera son rayon et les coordonnées de son centre *I*).
- **5)** On désigne par A', B' et C' les milieux de [BC], [AC] et [AB] et par M, N, P les symétriques de O par rapport aux points A', B' et C'. Déterminer les coordonnées de M, N et P. Vérifier que ces trois points sont sur (C).

Visiter notre site pour vous ressourcer en Maths-PC-SVT : <u>www.axloutoth.sn</u>

Siège: Point E (DAKAR)