

# Axlou Toth pour l'Innovation



pour l'innovation

Année Scolaire : 2018-2019 Lycée : CDM (Saint-Louis)

**SÉRIE D'EXERCICES**Suites Numériques

Niveau: TS1

Professeur: M. DiamBa



#### Exercice 1:

Soit  $(u_n)$  la suite définie par  $u_0 \neq 0$ , fixé, et pour tout  $n \in \mathbb{N}^*$ ,  $u_n = \frac{u_{n-1}}{3-2u_{n-1}}$ .

1. Déterminer a, réel non nul, tel que la suite  $(v_n)$  définie par  $v_n = \frac{u_n + a}{u_n}$  soit géométrique.

Déterminer alors la raison de  $(v_n)$ .

2. Suivant la valeur de  $v_0$ , discuter la convergence de  $(v_n)$  et son sens de variation. En déduire la limite de  $(u_n)$ . Etudier  $(u_n)$  pour  $u_0 = \frac{1}{2}$ .

# Exercice 2:

Soit  $(u_n)$  la suite définie par  $u_0 = 1$  et pour tout  $n \in \mathbb{N}^*$ ,  $u_n - 2u_{n-1} = 2n + 3$ .

- 1. Montrer qu'il existe un réel b indépendant de n tel que :  $v_n = u_n + 2n + b$  soit le terme général d'une suite géométrique dont on précisera le premier terme et la raison.
- **2.** En déduire que pour tout n :  $u_n = 2^{n+3} 2n 7$ .
- 3. On pose  $S_n = \sum_{k=0}^n v_k$ . Calculer  $S_n$  en fonction de n, déterminer la limite de  $(S_n)$  et calculer la plus petite valeur de n pour laquelle  $S_n$  est supérieure à 2017.
- **4.** On pose  $T_n = \sum_{k=0}^n u_k$ . Calculer  $T_n$  en fonction de n et déterminer la limite de  $(T_n)$

## Exercice 3:

Soit  $(u_n)$  la suite définie par  $u_0 = 1, u_1 = 2$  et  $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - \frac{1}{4}u_n$ .

- **1.** Soit  $(v_n)$  la suite définie par  $v_n = 2^n u_n$ .
  - a) Montrer que  $(v_n)$  est une suite arithmétique dont on donnera le premier terme et la raison.
  - **b)** En déduire que pour tout n :  $u_n = 2^{-n}(3n+1)$ .
- **2.a**) Démontrer que pour tout  $n \ge 2$ , on  $a : 2^n > \frac{n(n-1)}{2}$ .
  - **b**) En déduire que la suite de terme général  $\frac{n}{2^n}$  converge vers 0. Donner alors la limite de  $(u_n)$ .
- 3. En remarquant que  $u_n = 4u_{n+2} 4u_{n+1}$ , exprimer  $S_n = \sum_{p=0}^n u_p$  en fonction de  $u_1$  et  $u_{n+2}$ . En déduire la limite de  $(S_n)$ .

# Exercice 4:

**1.** On considère la suite  $(u_n)_{n\geq 1}$  de terme général  $u_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ .

Pour tout  $n \ge 2$ , on pose  $v_n = u_{n-1} - \ln n$ .

- a) Montrer que :  $\frac{1}{n+1} \le \ln(n+1) \ln n \le \frac{1}{n}$ ,  $\forall n \ge 1$ .
- **b**) En déduire que :  $\forall n \ge 1$ ,  $u_{n+1} 1 \le \ln(n+1) \le u_n$ .
- c) Quelle est la limite de  $(u_n)$ ?
- 2. Soient les fonctions f et g définies par :

$$f(x) = \frac{1}{x} - \ln\left(\frac{x+1}{x}\right)$$
 et  $g(x) = -\frac{1}{x+1} + \ln\left(\frac{x+1}{x}\right)$ .

a) Etudier les variations de f et g. Déterminer leur limite en  $+\infty$ .

# Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

- **b**) En déduire que :  $\forall n \ge 1$  :  $0 \le f(n) \le \frac{1}{n} \frac{1}{n+1}$ .
- c) Vérifier que :  $\forall n \geq 2$ ,  $v_n = f(1) + f(2) + \cdots + f(n-1)$ .
- **d**) En déduire que  $(v_n)$  est croissante et que :  $\forall n \geq 2$ ,  $f(1) \leq v_n < 1 \frac{1}{n+1}$ .
- e) Justifier que  $(v_n)$  converge vers un réel  $\ell$  dont on donnera en encadrement.

#### Exercice 5:

On considère la suite  $(u_n)$  définie par  $u_n = \left(1 + \frac{1}{n}\right)^n$ .

**1.** Montrer que  $(u_n)$  converge vers e.

On se propose de retrouver ce résultat par une autre approche.

- **2.a**) En utilisant le fait que pour x > -1,  $\ln(1+x) \le x$ , montrer que pour tout entier naturel  $n \ge 1$ , on a :  $\ln\left(1+\frac{1}{n}\right) \le \frac{1}{n}$  et  $u_n \le e$ .
- **b**) Montrer que :  $\forall n \ge 2$ ,  $-n \ln \left(1 \frac{1}{n}\right) \ge 1$  et  $\left(1 \frac{1}{n}\right)^{-n} \ge e$ .
- c) En déduire que :  $\forall n \ge 1$ ,  $\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 + \frac{1}{n}\right)^{n+1}$  et  $0 \le e u_n \le \frac{e}{n}$ .

Conclure pour la convergence de  $(u_n)$ .

## Exercice 6:

Soit la suite  $(U_n)$  définie par  $u_1 = 2$  et  $\forall n \ge 1$ ,  $\ln U_{n+1} = \frac{1}{2} \left[ \ln U_n + \ln \frac{n}{(n+1)^2} \right]$ .

- 1. Vérifier que cette suite est bien définie.
- **2.** On pose pour tout  $n \ge 1$ ,  $V_n = nU_n$  et  $W_n = \ln V_n$ .

Déterminer la relation entre  $V_n$  et  $V_{n+1}$  puis en déduire que  $(W_n)$  est une suite géométrique dont on précisera la raison et le premier terme.

- 3. Montrer que la suite  $(W_n)$  converge et en déduire que  $(U_n)$  converge vers un réel à préciser.
- **4.** Calculer la somme  $S_n = W_1 + W_2 + \cdots + W_n$ . En déduire une expression du produit  $P_n = V_1 \cdot V_2 \cdot \cdots \cdot V_n$  puis une expression du produit  $Q_n = U_1 \cdot U_2 \cdot \cdots \cdot U_n$ . Etudier les limites éventuelles des suites  $(S_n)$ ,  $(P_n)$  et  $(Q_n)$ .

#### Exercice 7:

- 1. Soit x un nombre réel positif ou nul et k un entier strictement supérieur à x.
  - a) Montrer par récurrence sur n, que :  $\forall n \ge k$ ,  $\frac{k^n}{n!} \le \frac{k^k}{k!}$ .
  - **b)** En déduire que pour tout entier naturel  $n \ge k$ ,  $\frac{x^n}{n!} \le \left(\frac{x}{k}\right)^n \times \frac{k^k}{k!}$
  - c) Montrer que  $\lim_{n \to +\infty} \frac{x^n}{n!} = 0$ .
- **2.a**) Montrer que pour tout entier  $n \ge 2$ ,  $\frac{n^{n-1}}{n!} \ge 1$ .

(On pourra écrire  $\frac{n^{n-1}}{n!}$  comme un produit de n-1 facteurs supérieurs ou égaux à 1)

**b**) En déduire que la suite  $\left(\frac{n^n}{n!}\right)$  diverge vers  $+\infty$ .

# **Exercices CIAM, TSM:**

Page 293 : N°32, N°33, N°35 et N°36 Page 294 : N°39, N°40, N°41 et N°42.