

Axlou Toth pour l'Innovation

pour l'innovation

Année Scolaire : 2018-2019 Lycée : Kébémer (LOUGA)

SÉRIE D'EXERCICESSimilitudes Planes Directes

Niveau : TERMINALE S2 Professeur : M. KEBE

EXERCICE 1:

Dans le plan complexe soit f la similitude qui, à tout point M d'affixe z, associe le point M' d'affixe z' définie par : z' = (1 - i) z + 2i.

- 1°) Déterminer le rapport, l'angle et le centre f.
- 2°) soient z = x + iy et z' = x' + iy', les formes algébriques des nombres complexe z et z'. Exprimer x' et y' en fonction de x et de y.
- 3°) Quelle est l'image par f de la droite d'équation x + 2y 1 = 0?
- **4°**) Quelle est l'image par f du cercle (C) de centre le point d'affixe i et de rayon $\sqrt{2}$?

EXERCICE 2:

Dans plan complexe, soit f la transformation qui au point M d'affixe z associe le point M' d'affixe z' définie par : $z' = (1 + i\sqrt{3}) z + \sqrt{3} (1 - i)$.

- 1°) démontrer que f admet un unique point invariable I ; déterminer l'affixe de I. Caractériser géométriquement f.
- **2**°) Soit G le barycentre des points I, M, M' affectés respectivement les cœfficients 3, 2, 1. Calculer les coordonnées de G en fonction de celles de M.
- **3**°) On suppose que le point M décrit la droite d'équation : y = x. Quel l'ensemble décrit par le point G?

EXERCICE 3:

Dans le plan affine euclidien muni d'un repère orthonormé (0, u, v) on considère les points A et B d'affixes respectives 1 + 3i et 2i.

- 1°) Soit S la similitude plane directe de centre B qui transforme O en A. On note z' l'affixe du point M' transformé par S du point M d'affixe z.
- a) Calculer le module et un argument du nombre complexe affixe du vecteur \overrightarrow{AB} .
- **b**) Calculer l'angle et le rapport de la similitude S.

Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

- c) Exprimer z' en fonction de z.
- 2°) Soit T la transformation qui, à tout point M d'affixe z, associe le point M'' d'affixe z'' = iz +
- 3. Donner la nature de T en précisant ses éléments caractéristiques. On note Ω le point invariant par la transformation T.
- 3°) Montrer que les points A, Ω , B sont les sommets d'un triangle isocèle

EXERCICE 4:

Soit f l'application du plan dans lui-même qui à tout point $M\begin{pmatrix} x \\ y \end{pmatrix}$ associe le point $M\begin{pmatrix} x \\ y \end{pmatrix}$ te

que
$$\begin{cases} x' = x + y + 2 \\ y' = -x + y - 1 \end{cases}$$

- 1) Déterminer l'écriture complexe de f.
- 2) Déduire la nature et les éléments caractéristiques de f

EXERCICE 5:

- 1) On considère l'équation (E) $z^3 + (-6-4i)z^2 + (12+21i)z 9-45i = 0$
 - a) Déterminer une solution imaginaire pure z_0 de (E).
 - **b**) Achever le résolution de l'équation (E)
- 2) Le plan complexe P est rapporté au repère orthonormé (O, \vec{u}, \vec{v}) . On considère les points A, B et C d'affixes respectives 3i, 3+3i et 3-2i.
 - a) Placer les points A, B et C dans le repère.
 - **b)** Calculer $\frac{z_A z_B}{z_C z_B}$. En déduire la nature de ABC.
- 3) Soit f la similitude directe qui laisse invariant B et qui transforme A en C.
 - a) Donner une écriture complexe de f.
 - **b**) Donner les éléments caractéristiques de la fonction f

Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

EXERCICE 6:

Soit S la transformation du plan dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe z' telle que : $z' = (i - \sqrt{3})z + 3 + \sqrt{3} + i(2\sqrt{3} + 1)$.

- 1) Déterminer la nature et les éléments caractéristiques de S.
- 2) Déterminer l'expression analytique de S.
- 3) Déterminer l'image par S de la droite passant le point $A(1-2\sqrt{3};0)$ et dont un vecteur directeur est $\vec{u}(\sqrt{3};1)$

EXERCICE 7

On considère les nombres complexes $a = -\sqrt{3} + i$, b = 3 + 2i et c = 7 - 2i.

- 1. a) Déterminer de deux façons différentes les racines carrées de a .En déduire les valeurs de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.
 - b) Déterminer les entiers relatifs n pour lesquels aⁿ est un nombre réel
 - c) Déterminer les entiers relatifs n pour lesquels aⁿ est imaginaire pur .
- 2. Déterminer et construire l'ensemble des points M d'affixe z tels que :

a)
$$|z - b| = |z - c|$$

b)
$$2|z - b| = |a|$$

- 3. Soit f l'application du plan dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe z' telle que : $z' = (1 + i\sqrt{3})z 5i\sqrt{3}$.
 - a. Démontrer que $\,f$ admet un seul point invariant Ω .
 - **b.** Démontrer que f est la composée d'une rotation et d'une homothétie positive de même centre Ω . Préciser l'angle de la rotation et le rapport de l'homothétie.

EXERCICE 8

- 1) Résoudre dans \mathbb{C} l equation $z^3 = 1$
- 2)Développer $(2-2i)^3$
- 3)Soit l'équation (*E*): $z^3 = -16 16i$

Cours de Renforcement ou à domicile Maths-PC-SVT: 78.192.84.64-78.151.34.44

- 4)En posant $u = \frac{z}{2-2i}$, déterminer sous forme algébrique puis sous forme trigonométrique les solutions de (E). En déduire les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$.
- 5) Dans le plan muni d'un repère orthonormé direct on considère les points A, B et C d'affixes respectives $z_A = -\frac{1}{2} i\frac{\sqrt{3}}{2}$; $z_B = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ et $z_C = -\frac{1}{2} i\frac{3\sqrt{3}}{2}$.
- **a.** Donner l'écriture complexe de la similitude *S* qui transforme *B* en *C* et laisse invariant le point *A*.Préciser son rapport et son angle.
 - **b.So**ient M'(z') l'image de M(z) par la similitude S. Déterminer l'ensemble des points M(z) tels que |z'|=2

EXERCICE 9:

Le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$ (unité graphique : 1cm)

- 1) On considère les points A et B d'affixes respectives 10 et 51.
 - a- Déterminer l'écriture complexe de la similitude s qui transforme O en A et B et O.
 - **b-** Déterminer les éléments caractéristiques de s. On note Ω son centre.
- **c-** Déterminer le point $s \circ s(B)$; en déduire la position du point Ω par rapport aux sommets du triangle ABO.
- 2) On note (D) la droite d'équation x 2y = 0, puis A' et B' les points d'affixes respectives 8+4i et 2+i.
- **a-** Démontrer que les points A' et B' sont les projetés orthogonaux respectifs des points A et Bsur la droite (D).
 - **b-** Vérifier que s(B') = A'.
- c- En déduire que le point Ω appartient au cercle de diamètre [A'B'].

Le BAC, j'ai confiance!